三角函数内容规律 t?VuE^|
T[CJgab
三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在. 1[v2|brb
P'nJ+BU
1、三角函数本质: N_pj_'V
mY hj;Y1;o
三角函数的本质来源于定义 g>a%GG6V4
gc|X="X!E
sinθ=y/ R; cosθ=x/R; tanθ=y/x; cotθ=x/y。 S?)[?
0;1&P
H
深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导 b=o\(Qg7d
U(-T`b#KZ
sin(A+B) = sinAcosB+cosAsinB 为例: ZksZjD(
O@V@\_(c
推导: u~Wrj>W2z
t0Q<"5&
首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A'OD。 oo./r52N
=h0
/kO
A(cosα,sinα),B(cosβ,sinβ),A'(cos(α-β),sin(α-β)) a:G1gGpGg
BUL-(W
OA'=OA=OB=OD=1,D(1,0) gmN'4X~
~S6AD~"
∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2 -(Ktk@fV6
D4Pi>KJ
和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2) )v^\A~W
fkF6-[B
[1] )fp9#w2
_
9ysV/)0--
两角和公式 f3hl4
7
i\q0-U;s
sin(A+B) = sinAcosB+cosAsinB gba>BW&17
~P;}!
sin(A-B) = sinAcosB-cosAsinB P/]'_l*<l
'P_Z'1
cos(A+B) = cosAcosB-sinAsinB D@sQy\o'Oc
3[Vs5\
cos(A-B) = cosAcosB+sinAsinB 8t0? aPKE!
9qLL$6V^/C
tan(A+B) = (tanA+tanB)/(1-tanAtanB) 0\*EM7ct[e
A$f]> B.c
tan(A-B) = (tanA-tanB)/(1+tanAtanB) Ei"Ffmf
BX/=)JZX6
cot(A+B) = (cotAcotB-1)/(cotB+cotA) `AaR)<+
"ogP}R|"
cot(A-B) = (cotAcotB+1)/(cotB-cotA) &mrHctc
Ey_=y1WQ7
倍角公式 ='>Wg*$we]
J$F;C8i
Sin2A=2SinA•CosA !T$(guF]u+
Lve9&7YFX
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 DCWY-tF
&_ |